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Lr./KSRMCE/ (Department of ECE)/2020-21

Date: 01/10/2020

To

The Principal

KSRM College of Engineering
Kadapa, AP.

Sub: KSRMCE - (Department of ECE) — Permission to conduct certification course on Deep learning using
Python — Request— Reg.

Respected Sir,

With reference to the cited, the Department of ECE is planning to conduct a certification course on
Deep learning using Python for B.Tech VII sem ECE students from 05.10.2020 to 20.10.2020 in online
mode. In this regard, we kindly request you to grant permission to conduct certification course. This is
submitted for your kind perusal.

. ,“—Q : Thanking you sir, \( ﬁ /
M v i
N Yours Haithfully,
o5t I
N~

N =S Coordinators,
\z’n ~ Sri K. Pavan Kumar
’%ﬁ (/\ ‘6/ Sri N. Radha Krishna.
Cc:
To The Director for Information

To All Deans/HODs

@/ksrmce.ac.in Follow Us: Ei @ % /ksrmceofficial
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Date: 01/10/2020

Circular

All the B.Tech VII sem ECE students are hereby informed that the department of ECE is going to
conduct 34 hours certification course on Deep learning using Python from 05/10/2020 to 20/10/2020.
Interested students may register their names with following link on or before 04/10/2020. - -

Registration Link: https://forms.gle/G25L wAXJwcMa7cLUA

For any queries contact,

Coordinators

Sri K. Pavan Kumar

c o —
Sri N. Radha Krishna. V. S.5. AW
Principal
) PRINCIPAL

K 8.R.M. COLLEGE OF ENGINEES
KADAPA - 516 003. (A.P.)

Ce to:
The Management /Director / All Deans / All HODS/Staff / Students for information

The IQAC Cell for Documentation

@/ksrmce.ac.in Follow Us: [Ei @ w9

/ksrmceofficial
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Certificate Course on Deep learning using Python

Registered Student List

S.No. Roll Number Name of the Student Year & Branch Email id
1 .

L 179Y1A0401 QEDSSYV'SHNU BaROHAN B.Tech VI sem; ECE | 1501 0401 @ksrmee.aciin
2 179Y1A0402 | ALA LAKSHMI SAI GOWRI (W) | B.Tech VIl sem, ECE | 179Y1A0402@ksrmce.ac.in
3 179Y1A0403 | AMBATI GURUSIVA B.Tech VIl sem, ECE | 179Y1A0403@ksrmce.ac.in
4 179Y1A0404 | AMBATI LAKSHUMAIAH B.Tech VIl sem, ECE | 179Y1A0404@ksrmce.ac.in
5 179Y1A0405 | ANDELA MATAM VINAY KUMAR | B-Tech Vil sem, ECE | 159v1 00405 @ksrmee.ac.in
6 179Y1A0406 | ANKANA SUNITHA (W) B.Tech VIl sem, ECE | 179Y1A0406@ksrmce.ac.in
o ANNAREDDY VENKATA B.Tech VIl sem, ECE .

179V1A0407 | e aNAOW) 179Y1A0407 @ksrmce.ac.in
8 179Y1A0408 | ANUGURU VINEELA (W) B.Tech VIl sem, ECE | 179Y1A0408@ksrmce.ac.in
9 179Y1A0409 | ATHIKARI PRATHYUSHA (W) B.Tech VIl sem, ECE | 179Y1A0409@ksrmce.ac.in
10 179Y1A0410 | AVINASH, B B.Tech VIl sem, ECE | 179Y1A0410@ksrmce.ac.in
11 179Y1A0411 | AVULA VAMSIKRISHNA B Tech VIl sem, ECE | 179Y1A0411@ksrmce.ac.in
12 179Y1A0412 | B BABU PRASAD B.Tech VIl sem, ECE | 179Y1A0412@ksrmce.ac.in
13 179Y1A0413 | BALAM SAINATH B.Tech VIl sem, ECE | 179Y1A0413@ksrmce.ac.in
14 BALARAMIREDDYGARI B.Tech VIl sem, ECE .

179Y1A0414 BHARATH KALYAN REDDY 179Y1A0414@ksrmce.ac.in
15 179Y1A0416 | BANDI NAVEEN KUMAR B Tech VIl sem, ECE | 179Y1A0416@ksrmce.ac.in
16 179Y1A0417 | BANDI NIKHIL KUMAR B Tech Vil sem, ECE | 179Y1A0417 @ksrmce.ac.in
17 179Y1A0418 | BANDI PRANEETH B.Tech VIl sem, ECE | 179Y1A0418@ksrmce.ac.in
18 179Y1A0419 | BANTHULLA ANIL KUMAR RAJU | B-Tech Vilsem, ECE | 179v1Ag419@ksrmee.ac.in
o 179Y1A0420 géglngDY MAHESH KUMAR | B.Tech VIl sem, ECE | 10y s0470@ksrmce.aciin
20 179Y1A0421 | BATHALA MANOJ B.Tech VIl sem, ECE | 179Y1A0421@ksrmce.ac.in
21 179Y1A0422 | BAYYARAPU SURESH B.Tech VIl sem, ECE | 179Y1A0422@ksrmce.ac.in
22 BHEEMAVARAPU VARA B.Tech VIl sem, ECE .

179Y1A0423 LAKSHMI (W) 179Y1A0423@ksrmce.ac.in
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BHUMIREDDY KUNTOLLA

B.Tech VIl sem, ECE

179Y1A0424 SURESH 179Y1A0424@ksrmce.ac.in
24 179Y1A0425 | BOYA GUNASEKHAR B.Tech VIl sem, ECE | 179Y1A0425@ksrmce.ac.in
25 179Y1A0426 | BUKKEY RAKESH NAIK B.Tech Vil sem, ECE | 179Y1A0426@ksrmce.ac.in
26 CHAG :

179Y1A0427 REDD?‘LETI SURYA NARAYANA | B.Tech VIl sem, ECE | ,9v1 n0a27 @ksrmee.ac.in
27 179Y1A0428 | CHAMARTHI SANJEEVARAJU B.Tech VIl sem, ECE | 179Y1A0428@ksrmce.ac.in
28 179Y1A0429 | CHAVVA JASWITHA (W) B.Tech VIl sem, ECE | 179Y1A0429@ksrmce.ac.in
29 179Y1A0431 | CHILLA VENKATESWARA RepDy | B-Tech Vil'sem, ECE | 479v1 70431 @ksrmce.ac.in
30 179Y1A0432 | CHILLATHOTI KEERTHI (W) B.Tech Vil sem, ECE | 179Y1A0432@ksrmce.ac.in
31 179Y1A0433 | DADIBOYINA LOHITHA (W) B.Tech VIl sem, ECE | 179Y1A0433@ksrmce.ac.in
32 R m;ﬂDEBOYINA NAVYA SREE B TRE Ve ECE | o e
33 179Y1A0435 DARA SEKHAR B.Tech VIl sem, ECE | 179Y1A0435@ksrmce.ac.in
34 179Y1A0436 | DEVAGUDI VENKATA suBBAIAH | B-Tech Vilsem, ECE | 459v170436@ksrmce.ac.in
23 179Y1A0437 ESI;(DK;J PALLERAIESHKUMAR B.Tech Vil sem, ECE | ,-9v1a0437@ksrmee.ac.in
26 179Y1A0438 ggj“SMARAJU RAMBACHAN B.Tech VIl sem, ECE | ;.91 n0438@ksrmce.ac.in
37 DUGGIREDDY VENKATA B Tech VIl sem, ECE :

179Y1A0439 THARUN KUMAR REDDY 179Y1A0439@ksrmce.ac.in
38 179Y1A0440 | ERIGELA MOUNIKA (W) B.Tech VIl sem, ECE | 179Y1A0440@ksrmce.ac.in
39 179Y1A0441 | ETHAKOTI RAJESH B.Tech VIl sem, ECE | 179Y1A0441@ksrmce.ac.in
5 179Y1A0442 gE%‘E'E DA UMA MAHESWARA | B.Tech VIl sem, ECE | ;41 20447 @ksrmce.ac.in
2 179Y1A0443 | GAIJALA DIVYA B.Tech VIl sem, ECE | 179Y1A0443@ksrmce.ac.in
42 GAJJALA VENKATA B Tech VIl sem, ECE .

179Y1A0445 ROHITHKUMAR REDDY 179Y1A0445@ksrmce.ac.in
43 GAJULAPALLI B.Tech VIl sem, ECE .

179Y1A0446 VENKATAPRASANNA (W) 179Y1A0446@ksrmce.ac.in
44 179Y1A0447 | GALIGUTTA VIDYA (W) B.Tech VIl sem, ECE | 199YIA0447 @ksrmce.ac.in
45 179Y1A0448 | GANDHAM ARAVINDA SAI B.Tech Vil sem, ECE | 179Y1A0448@ksrmce.ac.in
26 179Y1A0449 | GANGARAPU MYTHRI (W) B.Tech Vil sem, ECE | 179Y1A0449 @ksrmce.ac.in
47 GOPARAJULU RENUKA B Tech VIl sem, ECE :

ATOVIRGASE | (oot 179Y1A0452 @ksrmce ac.in
43 179Y1A0454 | GORLA SUSHMITHA REDDY (W) | B.Tech Vil sem, ECE | 179Y1A0454@ksrmce.ac.in
= 179Y1A0455 | GUDURU HARIKRISHNA B.Tech Vil sem, ECE | 1 ,9y1a0455@ksrmce.ac.in
S0 179Y1A0456 (;'EJSJ;LADU BTHLBALAYRLA B.Tech Vil sem, ECE | ;-5\ A0456@Ksrmce.ac.in
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CHARAN

52 179Y1A0458 | JULAKALVA NIRANJANAREDDY | B-Tech Vil'sem, ECE | 179v1p0458 @ksrmce.ac.in
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B.Tech VIl sem, ECE

179Y1A0459 | KALLURU SUNANDHANA (W) 179Y1A0459@ksrmce.ac.in
54 179Y1A0460 | KAMBAM VASU KALYAN RepDy | B-Tech Vilsem, ECE | 459v1a0460@ksrmce.ac.in
55 179Y1A0461 | KAMBELLA SAMBA B.Tech Vil sem, ECE | 179Y1A0461@ksrmce.ac.in
= 179Y1A0463 :Egéy\ PRENODKUMAR B.Tech Vil sem, ECE | | qv1 a0463@ksrmee.acin
57 179Y1A04A4 | PICHALA VINOD KUMAR REDDY | B.Tech VIl sem, ECE | 179Y1A04A4@ksrmce.ac.in
58 179Y1A04A5 | POGILI SIVALAHARI (W) B.Tech Vil sem, ECE | 159v9A04A5@ksrmee.ac.in
59 179Y1A04A6 | POLEPALLI VIJAYA VANI (W) B.Tech VIl sem, ECE | 179Y1A04A6@ksrmce.ac.in
60 179Y1A04A8 | PULICHERLA YASWANTH REDDY | B.Tech VIl sem, ECE | 179Y1AQ4A8@ksrmce.ac.in
61 17oviroang | RAMACHANDRAPPA GARI BTRCh WILSRTECE. | oot ioot o
BHARATH
62 179Y1A04B0 | RANADHIR REDDY U B.Tech VIl sem, ECE | 179Y1A04B0O@ksrmce.ac.in
63 Ep—— :ivﬁ\\,l)\iGAREDDIGARI NITHYA SREE | B.Tech VIl sem, ECE | o\ 00 o0 ceacin
64 e E:RJRARAJU CHARAN KUMAR | B.Tech Vil sem, ECE | oo 0o o o acin
65 179Y1A04B4 | SAMPATHI REDDY ESWARsal | B-Tech Vilsem, ECE | 159v1 po4a@ksrmee.acin
66 179Y1A04B5 | SETTIPALLI PAVAN KALYAN B.Tech Vil sem, ECE | 1-9v1204B5@ksrmce.ac.in
67 179Y1A04B6 | SHAIK ATHAR B.Tech Vil sem, ECE | 179Y1A04B6@ksrmce.ac.in
68 179Y1A04B7 | SHAIK FUZAIL B.Tech Vil sem, ECE | 179Y1A04B7 @ksrmce.ac.in
69 179Y1A04B9 | SHAIK MOHAMMAD SHAKEER | B.Tech VIl sem, ECE | 179Y1A04B9@ksrmce.ac.in
70 179Y1A04C0 | SHAIK MOHAMMED SHARIF B.Tech VIl sem, ECE | 159v1p04co@ksrmce.ac.in
71 179Y1A04C1 | SHAIK NOOR MOHAMMED B.Tech Vil sem, ECE | 179Y1A04C1@ksrmce.ac.in
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Deep Learning Using Python
Overview:

Deep learning is the machine learning technique behind the most exciting capabilities in diverse
areas like robotics, natural language processing, image recognition, and artificial intelligence.
including the famous AlphaGo.

Course Objectives:

e Study the basic concepts of neural networks.
e Study the basic concepts of deep learning.

Course Outcomes:

¢ Understand the context of neural networks and deep learning.
e Know how to use neural networks.

Module I:

An introduction to neural networks, neurons, layers, multilayer neural networks, different types
of activation functions, examples.

Module II:

Introduction to deep learning, seeking deep learning: network types, development frameworks
and network models, deep learning development flow, application space.

Module 111:

Introduction to popular open source libraries: Tensor flow, keras, pyTorch, using keras to
classify hand written digits, using keras to classify images of objects.

Module IV:

Training neural networks: Linear regression, Logistic regression, Back propagation, code
examples of a neural network for the XOR function.

Textbooks:

1. Python Deep Learning by Ivan Vasilev, Daniel Slater, CianmarioSpaceagna, Peter
Roelants and Valentino Zocca, 2™ edition, PACKT.

Reference Textbook:

1. Goodfellow, I.. Bengio.Y ., and Courville, A., Deep Learning, MIT Press, 2016.
2. Yegnanarayana, B., Artificial Neural Networks PHI Learning Pvt. Ltd, 2009.




Web references:

1. Neural Network and Its Applications , Prof. SomnathSengupta , IIT Kharagpur.
2. https://www.simplilearn.com/tutorials/deep-learning-tutorial/deep-learning-with-python
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Professor & N.O.D.
Department of E.C.E.

L5.RM. College of Engineering
RADAPA - 516 003,
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Certificate Course on Deep learning using Python

Schedule
S.No Date Time Faculty Topic
1 |05/10/2020 | 3PM to 5SPM Dr.D.ArunKumar Inauguration
5 Sri K.Pavan Kumar
Sri N.Radha Krishna
2 |06/10/2020 | 3PM to 5PM . Dr.D.ArunKumar An introduction to neural
networks, neurons, layers
3 07/10/2020 | 3PM to 5SPM. Dr.D.ArunKumar multilayer neural networks,
different types of activation
functions
4 | 08/10/2020 | 3PMto 5SPM Dr.D.ArunKumar Introduction to deep learning
5 |09/10/2020 | 3PM to SPM Dr.D.ArunKumar seeking deep learning: network
; types, development frameworks
and network models
6 | 10/10/2020 | 3PM to 5PM Dr.D.ArunKumar Deep learning development
flow, application space.
7 | 11/10/2020 | 3PM to 5PM Dr.D.ArunKumar Introduction to popular open
source libraries
8 12/10/2020 | 3PM to SPM Sri.K.Pavan Kumar Tensor flow,
9 | 13/10/2020 | 3PM to 5SPM Dr.D.ArunKumar keras
10 | 14/10/2020 | 3PM to 5PM Sri.N.Radha Krishna pyTorch, using keras to classify
hand written digits
11 | 15/10/2020 | 3PM to SPM Dr.D.ArunKumar usingkeras to classify images of
objects.
12 |16/10/2020 | 3PM to 5SPM Sri.K.Pavan Kumar Training neural networks
13 | 17/10/2020 | 3PM to 5SPM Sri.K.Pavan Kumar Linear regression, Logistic
regression
14 | 18/10/2020 | 3PM to SPM Sri.N.Radha Krishna Back propagation
15 | 19/10/2020 | 3PM to 6PM Sri.N.Radha Krishna Code examples of a neural
network for the XOR function




16 | 20/10/2020 | 3 PM to 6PM Dr.D.ArunKumar Exam and Certificate
Sri.N.Radha Krishna Distribution
Sri.K.Pavan Kumar
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e OESTY) - Approved by AICTE, New Delhi & Affiliated to JNTUA, Ananthapuramu,
An ISO 14001:2004 & 9001: 2015 Certified Institution

ACTIVITY REPORT

Certification Course
On
“DEEP LEARNING USING P YTHON>»

05" October, 2020 to 20 October, 2020

Target Group : Students
Details of Participants ; 71 Students
Co-ordinators : Sri K. Pavan Kumar, Asst, Prof, Dept. of ECE

Sri N. Radha Krishna, Asst. Prof, Dept. of ECE

Organizing Department Department of Electronics & Communication Engineering

Venue : Online mode (Google meet)

Description:

Certification course on “DEEP LEARNING USING PYTHON” was organized by Dept. of ECE from
05" October 2020 to 20" October 2020 in online mode, Dr. D. Arun Kumar, Sri K. Pavan Kumar and Sri N.
Radha Krishna acted as Course instructors. The main aim of the course is to learn the basic concepts of the
neural networks and Deep learning. This 34 Hours course was successfully completed and participation
certificates were provided to the participants.

Lh/ksrmee.acin Follow Us: K3 @) uf /ksrmceofficial 5
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Lecture 1: Introduction to deep learning y : 2

About this course

+ Introduction to deep learning

— basics of ML assumed

— mostly high-school math

— much of theory, many details skipped
o 1st day: lectures + small-scale exercises using
« 2nd day: mid-scale experiments using GPUs at Taito-GPU

» Slides at: hitps://tinyu L
* Other materials (and link to Gitter) at GitHub:
h -Hleithub.com/cse-training to

* Focus on text and image classification, no fancy stuff
= Using Python, Keras, and PyTorch

Further resources

= This course is largely “inspired by":

“Deep Learning with Python” by Francois Chollet
« Recommended textbook:

“Deep learning” by Goodfellow, Bengio, Courville

Lots of further material available enline, e.g.:

Academic courses

What is artificial intelligence?

Artificial intelligence is the ability of 2 computer to perform tasks
commonly associated with intelligent beings.

What is machine learning?

Machine learning is the study of algorithms that learn from
examples and experience instead of relying on hard-coded rules
and make predictions on new dala

What is deep learning?

Deep learning is a subfield of machine learning focusing on
learning data representations as successive layers of increasingly
meaninzful representations.

~
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Demotivational slide

“All of these Al systems we see, none of them is ‘real’ Al”
—Josh Tennenbaum

“Neural networks are ... neither neural nor even networks.”
- Frangois Chollet, author of Keras #4 i

Main types of machine leaming

Main types of machine learning

* Supervised learning

= Unsupervised learning
= Self-supervised learning
« Reinforcement learning




Main types of machine learning

Supervised learning

Unsupervised learning
Self-supervised learning
Reinforcement learning

Main types of machine learning

Supervised learning

Unsupervised learning
Self-supervised learning
Reinforcement learning

Main types of machine learning

Supervised learning

Unsupervised learning
Self-supervised learning
Reinforcement learning

Fundamentals of machine learning

Data

Humans learn by observation and

unsupervised learning

— model of the world /
common sense reasoning

Machine learning needs lots of
(labeled) data to compensate

Data

Tensors: generalization of matrices
to n dimensions (or rank, order, degree)

- 1D tensor: vector gy
— 2D tensor: matrix

— 3D, 4D, 5D tensors

— numpy.ndarray(shape, dtype)
Training — validation — test split (+ adversarial test)
Minibatches

— small sets of input data used at a time




Model - learning/training — inference

s §=f(x0)

« parameters 6 and hyperparameters

* Mathematical optimization:

= Main types:

Optimization

“the selection of a best element (with
regard to some criterion) from some
set of available alternatives” (Wikipedia)

finite-step, iterative, heuristic

* Learning as an optimization problem ™=

— cost function:

> L(f(x::0),%) + R(@)

Optimization f

Irmage rom: U et sl Vieuakizing tha Loss Lamdacape of Neural Nets”, a0 1712.09613

Gradient descent

« Derivative and minima/maxima of functions
= Gradient: the derivative of a multivariable function
* Gradient descent:

GH.]_ = 9; e Y

= (Mini-batch) stochastic gradient
descent (and its variants)

Over- and underfitting, generalization,
regularization

* Models with lots of parameters can
easily overfit to training data

« Generalization: the quality of ML model
is measured on new, unseen samples

* Regularization: any method* to prevent
overfitting
— simplicity, sparsity, dropout, early stopping
— *) other than adding more data

Deep learning




Anatomy of a deep neural network

Layers
Input data and targets
Loss function

Layers

Data processing modules l
Many different kinds exist | doass_4: Deaso }.w B "’.._|
— densely connected i e

- convolutional
— recurrent

Optimizer — pooling, flattening, merging, normalization, etc.
P Input: one or more tensors

output: one or more tensors

Usually have a state, encoded as weights

— learned, initially random

When combined, form a network or

a model

it X
Input data and targets {“:": Loss function
7 : The quantity to be minimized (optimized) during training

The network maps the input data X o Layer “ - the only.thlng the network can:-:s about
to predictions Y’ Free — there might also be other metrics you care about
During training, the predictions Y’ Patn i Common tasks have “standard” loss functions:

are compared to true targets Y
using the loss function

— mean squared error for regression

— binary cross-entropy for two-class classification

— categorical cross-entropy for multi-class classification
- etc ;

s://lossfunctions. tumblr.com/

Optimizer

How to update the weights
based on the loss function

Learning rate

Stochastic gradient descent,

momentum, and their

variants

— RMSProp is usually a good
first choice

— more info:

ek gryieny Speoent

Anatomy of a deep neural network

g X
T = i
e 1 (ot ramatons
PPN, LT
prrn ! Layer
L "’f‘“ (aata




Deep learning frameworks

Caffe

***10ch o

¢ Chainer

O PyTorch .

TensorFlow

dmlc
mxnet

O Caffe2

K theano

Deep learning frameworks

Actually tools for defining static or dynamic
general-purpose computational graphs

Automatic differentation

Seamless CPU / GPU usage
— multi-GPU, distributed

Python/numpy or R interfaces
— instead of C, C++, or CUDA

Open source

« Keras is a high-level
neural networks API

* PyTorchis:

— we will use TensorFlow ﬁ *
as the compute backend

— a GPU-based tensor library

— an efficient library for dynamic neural networks




Introduction to Deep Learning



Agenda

Introduction to deep learning:
« What is deep learning?

+ Speaking deep learning: network types, development frameworks and
network models

* Deeplearning development flow
* Application spaces







What is deep learning?

Deep learning is way of classifying, clustering, and predicting things by using a neural
network that has been trained on vast amounts of data.

Picture of deep learning demo done by TI's

vehicles road ns Barson At e ' | .
o ; ..b{fc'i"(gmund automotive driver assistance systems (ADAS) team.




What is deep learning?

« Deep learning has its roots in neural networks.

« Neural networks are sets of algorithms, modeled loosely after the human brain, that are
designed to recognize patterns.

Biological neuron

_dendrites inputs.
synapses weight
R eutelt
e summationand
_cellbody threshold
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What is deep learning?

Deep learning is way of classifying, clustering, and predicting things by using a neural
network that has bee

Machine

n trained on vast amounts of data.

...any type of data
you want to classify,

cluster or predict

100110011010100
101001101011010
111011110101001
100010110010010
001001000010001
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What is deep learning?

Deep learning creates many layers of neurons, attempting to learn structured
representation of big data, layer by layer.

90% Dog

%

10% Wolf

PEEELT




~ Architecture of the network: Network models

Deep neural networks are mathematical models of intelligence designed to mimic human brains.
Network models define a set of network layers and how they interact.
Questionsto answer while designing a network modelsinclude:

— Which layertype to use?

— Howmany neuronsto use in each layer?

— How are layers arranged?
— And more

There are many standard CNN models available today which work great for many standard problems.
Examples beingAlexNet, GoogleNet, Inception-ResNet, VGG, etc.
A

L ]

A = number of layers é
282 [

L]
A
‘,.,
i 22 Imrs 19Iayers i
‘ 6.7

l j Bllvers s Eiayegs 1 . shallow
5 . mE

ILSVRC'1S  ILSVRC'14 II.SVRC‘M ILSVRC'H ILSVRC'12  ILSVRC'11  ILSVRC'10
The ImageNetproject is a large visual database designed for use in visual object recognition software ResNet  GoogleNet AlexNet

research. Since 2010, the ImageNet project runs an annual software contest — The ImageNet Large
Scale Visual Recognition Challenge (ILSVRC), where software programs compete to correctly classify
and detect obiects and scenes.

Classification error rate (Top-5)
v

ILSVRC annual contest year and winning model




Typical layers involved in CNN

Feature maps

32x32x3
Input

Four filters of size 5x5

—
------- A%
b LTS

", Output Score

.

Four filters of size 5x5 23212 16x16x12
Convolutions Subsampling Convolutions Subsampling Fully connected
+ Relu
Example CNN model
“roy
Slu) = max{0,u)

Boutce pisel

Convolution

2 x 2 Max-Pool

ks sl Fully-connected layer

Layers involved




Deep learning development flow

1. Selection of a framework for development

2. Selecting labeled data set of classes to train the
network upon

Designing initial network model
4. Training the network

5. Savingthe parametersand architectureina
binary file

6. Inference

Training

~ Inference
“oat? i ettt £

\/

=7 -

backward error

8 Smaller,
varied N

Trained Network

Tralitiing Translate ' Inferance~deep leaming application
(PC/GPL) (PC) {embedded device)

B
Forward » udogn




Deep learning frameworks

+ Building a deep learning solutionis a big challenge because of its complexity.

Amazon

* Frameworks are tools to ease the building of deep learning solutions. i

» Frameworks offer a higher level of abstraction and simplify potentially
difficult programming tasks.

Microsoft

Popular Frameworks:  Bkerss |
‘:\“ £

* TensorFlow:
— Developed by Google theano

— The most used deep learning framework g '
— Based on Github stars and forks and Stack Overflow activity g
« Caffe: Facebook

— Developed by Berkeley Vision and Learning Center (BVLC)
— Popular for CNN modeling (imaging/computer vision applications) and its Model Zoo (a selection of pre-trained networks)

Next to all these frameworks, there are also interfaces that are wrapped around one or multiple frameworks. The most well-
knownand widely-used interface for deep learningtoday is Keras. Keras is a high-level deep learning AP, written in Python.

Keras




Where can deep learning be used?

Anywhere you want to classify data ...

i

Industrial Factory & Automation Agriculture | Retail

- e . | - [nprove attomiated eheckout
* Improving pickand place |  Optimize crop watering |, 1.2y shoppers and provide
+ Predictive maintenance/failure |  and harvesting ih‘ééﬁtiVesP P




PR

P

R A A AT T AR T

' ADeép learning development flow

—

Inference-- deep learning

Translate

P TR

Initial Network Design Iterate with translate Train (PC/GPU) lication (embedded design)
application (embedded design

Deploy Network

Adjust breadth,

depths, etc.
Trained Network

Abstracts offline
- network training from
real-time network
deployment on
. embedded devices

U
Refine Network
adjust weights




Introduction to deep learning summary

- What is deep learning? Artificial intelligence, or Al, is an umbrella term for any
computer program that does something smart. Machine learning is a subset of
Al and Deep Learning is subset of Machine Learning.

« Deep learning has its roots in neural networks.

« Neural networks are sets of algorithms, modeled loosely after the human brain,
that are designed to recognize patterns.

- Speaking deep learning: Network types, nodes, layers, development
frameworks and network models.

« Deep learning solution development flow
« Application spaces




Deep learning: A few example uses

Industrial

Object detection and localization

Sorting

Robotics

‘Quality control and inspection

= AR/(camera pose and location)
 Packaging

Smart Homes

“Vacuum cleaners

Automatic lawn mowers

Intrusion and Hazard detection
Smart lights, ovens, refrigerators, etc.

Retail
Analytics

Warehouse management

Theft prevention

Intelligent bar code scanners
Monitoring and distribution control
(shelf replenishment, eic.)

Drones

Obstacle avoidance

Path planning

Flight control with radar and camera
SEensors

Entertainment/Gaming

« Gesture recognition

User identification
Emotional feedback
Experience monitoring
Advanced analytics

Agriculture

« Autonomous tractors and combines

Fruit harvesting
Weed control

Mission Critical

Perimeter survelllance

Target acquisition

Fire-and-forget guidance
« Autonomous vehicles

Smart Cities & Infrastructure
« Parking ;
» Traffic monitoring Sorting

Food Industry

= Security monitoring Quality control

.+ Road inspection




RECALL: LOGISTIC
REGRESSION



e
Outline

 Logistic Regression (Recap)
* Neural Networks
» Backpropagation




Introducing popular open source libraries:

There are many open-source libraries that allow the creation of deep neural nets in Python,
without having to explicitly write the code from scratch. In this book, we'll use three of the
most popular: - TensorFlow, Keras, and PyTorch. They all share some common features, as
follows:

The basic unit for data storage is the tensor. Consider the tensor as a
generalization of a matrix to higher dimensions. Mathematically, the definition of
a tensor is more complex, but in the context of deep learning libraries, they are
multi-dimensional arrays of base values. A tensor is similar to a NumPy array
and is made up of the following: A basic data type of tensor elements. These can vary between
libraries, but typically include 16-, 32-, and 64-bit float and §-, 16-, 32-, and 64-bit integers.

An arbitrary number of axes (also known as the rank, order, or degree of the tensor).An 0D
tensor is just a scalar value, 1D is a vector, 2D is a matrix, and so on. In deep networks, the data
is propagated in batches of # samples. This is done for performance reasons, but it also suits the
notion of stochastic gradient descent. For example, if the input data is one-dimensional, such as
[0, 1], [1, 0], [0, 0], and [1, 1] for XOR values, we'll actually work with a 2D tensor [0 11 [1;
01, [0, 0], [1, 1]] to represent all of the samples in a single batch. Alternatively, two-dimensional
grayscale images will be represented as a three-dimensional tensor. In the context of deep
learning libraries, the first axis of the tensor represents the different samples.
A shape that is the size (the number of values) of each axis of the tensor. For example, the XOR
tensor from the preceding example will have a shape of (4, 2). A tensor representing a batch of
32 128x128 images will have a shape of (32, 128, 128). Neural networks are represented as a
computational graph of operations. The nodes of the graph represent the operations (weighted
sum, activation function, and so on). The edges represent the flow of data, which is how the
output of one operation serves as an input for the next one. The inputs and outputs of the
operations (including the network inputs and outputs) are tensors. All libraries include
automatic differentiation. This means, that all you need to do is define the network architecture
and activation functions, and the library will automatically figure out all of the derivatives
required for training with backpropagation. All libraries use Python. Until now, we've referred to
GPUs in general, but in reality, the vast majority of deep learning projects work exclusively with
NVIDIA GPUs. This is so because of the better software support NVIDIA provides. These
libraries are no exception — to implement GPU operations, they rely on the CUDA toolkit in
combination with the cuDNN library. cuDNN is an extension of CUDA, built
specifically for deep learning applications. As was previously mentioned in the Applications of
deep learning section, you can also run your deep learning experiments in the cloud.

For these libraries, we will quickly describe how to switch between a GPU and a
CPU. Much of the code in this book can then be run on a CPU or a GPU, depending on the
hardware available to the reader.




TensorFlow

TensorFlow(TF) (https://www.tensorflow.org), is the most popular deep learning library. It's
developed and maintained by Google. You don't need to explicitly require the use of a GPU;
rather TensorFlow will automatically try to use it if you have one. If you have more than one
GPU, you must assign operations to each GPU explicitly, or only the first one will be used. To
do this, you simply need to type the line that is show in the following code block:
with tensorflow.device("/gpu:1"): # model definition here Here's an example: "/cpu:0": the main

CPU of your machine
"/gpu:0": the first GPU of your machine, if one exists
"/gpu:1":  the second GPU of your  machine, if a second exists

"/gpu:2": the third GPU of your machine, if a third exists, and so on
TensorFlow has a steeper learning curve, compared to the other libraries. You can refer to
the TensorFlow documentation to learn how to use it.

Keras

Kerasis a high-level neural net Python library that runs on top of
TensorFlow, CNTK (https://github.comeicrosoft/CNTK), or Theano. For the purposes
of this book, we'll assume that it uses TensorFlow on the backend. With Keras, you can
perform rapid experimentation and it's relatively easy to use compared to TF. It will
automatically detect an available GPU and attempt to use it. Otherwise, it will revert to the
CPU. If you wish to specify the device manually, you can import TensorFlow and use the
same code as in the previous section, TensorFlow: with tensorflow.device("/gpu:1"):
# Keras model definition here Once again, you can refer to the online documentation for further
information at http:/keras.io.

PyTorch PyTorch(https:/pytorch.org/) is a deep learning library based on Torch and developed
by Facebook. It is relatively easy to use, and has recently gained a lot of popularity. It will
automatically select a GPU, if one is available, reverting to the CPU otherwise. If you wish to
select the device explicitly, you could wuse the following code sample:
# at beginning of the script device = torch.device("cuda:0" if torch.cuda.is_available() else
"cpu") ... # then whenever you get a new Tensor or Module # this won't copy if they are already
on the desired device input = data.to(device) model = MyModule(...).to(device)

Using Keras to classify handwritten digits I

n this section, we'll use Keras to classify the images of the MNIST dataset. It's comprised of
70,000 examples of handwritten digits by different people. The first 60,000 are typically used for
raining and the remaining 10,000 for testing: One of the advantages of Keras is that it can import
his dataset for you without needing to explicitly download it from the web (it will download it
for you):

1. Our first step will be to download the datasets using Keras: from keras.datasets import mnist.




2. Then, we need to import a few classes to use a feed-forward network:
from keras.models import Sequential from keras.layers.core import Dense, Activation from
keras.utils import np_utils.

3. Next, we'll load the training and testing data. (X_train, Y_train) are the training images and
labels, and (X_test, Y _test) are the test images and labels:
(X_train, Y_train), (X_test, Y_test) = mnist.load_data().

4. We need to modify the data to be able to use it. X _train contains 60,000 28 x 28 pixel images,
and X_test contains 10,000. To feed them to the network as inputs, we want to reshape each
sample as a 784-pixel long array, rather than a (28,28) two-dimensional matrix. We can
accomplish this with these two lines: X _train = X_train.reshape(60000, 784) X test =
X_test.reshape(10000, 784).

5. The labels indicate the value of the digit depicted in the images. We want to convert this into a
10-entry one-hot encoded vector comprised of zeroes and just one 1 in the entry corresponding
to the digit. For example, 4 is mapped to [0, 0, 0,0, 1, 0, 0, 0, 0, 0]. Conversely, our network will
have 10 output neurons: classes = 10 Y train = np_utils.to_categorical(Y_train, classes)
Y_test = np_utils.to_categorical(Y _test, classes).

6. Before calling our main function, we need to set the size of the input layer (the size of the
MNIST images), the number of hidden neurons, the number of epochs to train the network, and
the mini batch size: input_size = 784 batch_size = 100 hidden_neurons = 100 epochs = 100

7. We are ready to define our network. In this case, we'll use the Sequential model, where each
layer serves as an input to the next. In Keras, Dense means fully-connected layer. We'll use a
network with one hidden layer, sigmoid activation, and softmax output: model = Sequential([
Dense(hidden_neurons, input_dim=input_size), Activation('sigmoid"), Dense(classes),
Activation('softmax")]).

8. Keras now provides a simple way to specify the cost function (the loss) and its optimization,
in this case, cross-entropy and stochastic gradient descent. We'll use the default values for
learning rate, momentum, and so on: model.compile(losS='categorical_crossentropy',
metrics=['accuracy'], optimizer="sgd").

Softmax and cross-entropy:

In the Logistic regression section of Chapter 2, Neural Networks, we learned how to apply regression to
binary classification (two classes) problems. The softmax function is a generalization of this concept for
multiple classes. Let's look at the following formula: Here, i, J =20, 1,2, .. nand xi represent each of
narbitrary real values, corresponding to.» mutually exclusive classes. The softmax "squashes" the input
values in the (0, 1) interval, similar to the logistic function. But it has the additional property that the sum
of all the squashed outputs adds up to 1. We can interpret the softmax outputs as a normalized probability
distribution of the classes. Then, it makes sense to use a loss function, which compares the difference
between the estimated class probabilities and the actual class distribution (the difference is known as




crossentropy). As we mentioned in step 5 of this section, the actual distribution is usually a one-hot-
encoded vector, where the real class has a probability of 1, and all others have a probability of 0. The loss
function that does this is called cross-entropy loss: Here, qi(x) is the estimated probability of the output to
belong to class i(out of n total classes) and pi(x) is the actual probability. When we use
one-hot-encoded target values for pi(x), only the target class has a nonzero value (1) and all others are
zeros. In this case, cross entropy loss will only capture the error on the target class and will discard all
their errors. For the sake of simplicity, we'll assume that we apply the formula over a single training
sample.

9. We are ready to train the network. In Keras, we can do this in a simple way, with the fit method:

model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=epochs,
verbose=1)

10. All that's left to do is to add code to evaluate the network accuracy on the test data:

score = model.evaluate(X_test, Y_test, verbose=1) print('Test accuracy:', score[1
Y

And that's it. The test accuracy will be about 96%, which is not a great result, but this example runs in
less than 30 seconds on a CPU. We can make some simple improvements, such as a larger number of
hidden neurons, or a higher number of epochs. We'll leave those experiments to you, to familiarize
yourself with the code. 11. To see what the network has learned, we can visualize the weights of the
hidden layer. The following code allows us to obtain them:

weights = model.layers[0].get_weights()

12. To do this, we'll reshape the weights for each neuron back to a 28x28 twodimensional array:
import matplotlib.pyplot as plt

import matplotlib.cm as cm

import numpy

fig = plt.figure()

w = weights[0].T

for neuron in range(hidden_neurons):

ax = fig.add_subplot(10, 10, neuron + 1) .

ax.axis("off")

ax.imshow(numpy.reshape(w[neuron], (28, 28)), cmap=cm.Greys r)
plt.savefig("neuron_images.png", dpi=300)

plt.show()

Using Keras to classify images of objects With Keras, it's easy to create neural nets, but it's also easy to
download test datasets. Let's try to use the CIFAR-10 (Canadian Institute For Advanced Research, https://
www.cs. toronto.edu/~kriz/cifar.html) dataset instead of MNIST. It consists of 60,000 32x32 RGB
images, divided into 10 classes of objects, namely: airplanes, automobiles, birds, cats, deers, dogs, frogs,
horses, ships, and trucks:




1. We'll import CIFAR-10 in the same way as we did MNIST: from keras.datasets import cifar10 from
keras.layers.core import Dense, Activation from keras.models import Sequential from keras.utils import
np_utils.

2. Then, we'll split the data into 50,000 training images and 10,000 testing images.
Once again, we need to reshape the image to a one-dimensional array. In this
case, each image has 3 color channels (red, green, and blue) of 32x32 pixels, hence
3 x32x3 =3072:

(X_train, Y_train), (X_test, Y_test) = cifarl 0.load_data()
X_train =X_train.reshape(50000, 3072)

X _test=X_test.reshape(10000, 3072)

classes = 10

Y_train = np_utils.to_categorical(Y_train, classes)
Y_test =np_utils.to_categorical(Y_test, classes)
input_size = 3072

batch_size = 100

epochs = 100

3. This dataset is more complex than MNIST and the network has to reflect that. Let's try to use a network
with three hidden layers and more hidden neurons than the previous example:

model = Sequential([
Dense(1024, input_dim=input_size),

Activation('relu"),

Dense(512),

Activation('relu’),

Dense(512),

Activation('sigmoid"),

Dense(classes),

Activation('softmax’)

D

4. We'll run the training with one additional parameter, validation_data=(X_test, Y_test), which will use
the test data as a validation set:
model.compile(loss='categorical_crossentropy’,
metrics=['accuracy'], optimizer="sgd")

model.fit(X_train, Y_train, batch_size=batch_size, epochs=epochs,
validation_data=(X_test, Y_test), verbose=1)

5. Next, we'll visualize the weights of 100 random neurons from the first layer. We'll reshape the weights
to 32x32 arrays and we'll compute the mean value of the 3 color channels to produce a grayscale image:

import matplotlib.pyplot as plt
import matplotlib.cm as cm
import matplotlib.gridspec as gridspec




import numpy

import random

fig = plt.figure()

outer_grid = gridspec.GridSpec(10, 10, wspace=0.0, hspace=0.0)
weights = model.layers[0].get_weights()

w = weights[0].T

for i, neuron in enumerate(random.sample(range(0, 1023), 100)):
ax = plt.Subplot(fig, outer_grid[i])
ax.imshow(numpy.mean(numpy.reshape(w[i], (32, 32, 3)), axis=2),
cmap=cm.Greys_r)

ax.set_xticks([])

ax.set_yticks([])

fig.add_subplot(ax)

plt.show()
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